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Moderate deviations for recursive stochastic
algorithms

Paul Dupuis� and Dane Johnsony

Division of Applied Mathematics
Brown University

Providence, RI 02912

2nd August 2014

Abstract

We prove a moderate deviation principle for the continuous time in-
terpolation of discrete time recursive stochastic processes. The meth-
ods of proof are somewhat di¤erent from the corresponding large de-
viation result, and in particular the proof of the upper bound is more
complicated.

1 Introduction

In this paper we consider Rd-valued discrete time processes of the form

Xn
i+1 = X

n
i +

1

n
b(Xn

i ) +
1

n
�i(X

n
i ), X

n
0 = x0;

where f�i(�)gi2N0 are zero mean random independent and identically distrib-
uted (iid) vector �elds, and focus on their continuous time piecewise linear
interpolations fXn(t)g0�t�T with Xn(i=n) = Xn

i (see (2.5) for the precise
de�nition). Under certain conditions there is a law of large number limit
X0 2 C([0; T ] : Rd), and the large deviations of Xn from this limit have
been studied extensively (see, e.g., [1, 10, 12, 15, 17]). Here we introduce a

�Research supported in part by the Department of Energy (DE-SCOO02413, DE-
SC0010539), the National Science Foundation (DMS-1317199), and the Army Research
O¢ ce (W911NF-12-1-0222).

yResearch supported in part by the Department of Energy (DE-SCOO02413) and the
Air Force O¢ ce of Scienti�c Research (FA9550-12-1-0399)
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scaling a(n) satisfying a(n)! 0 and a(n)
p
n!1, and study the ampli�ed

di¤erence between Xn and its noiseless version Xn;0 (see Section 2 for the
de�nition of Xn;0):

Y n = a(n)
p
n(Xn �Xn;0):

Under Condition 2.1 introduced below supt2[0;T ]
X0(t)�Xn;0(t)

 � O(1=n),
and hence Y n will behave the same asymptotically as a(n)

p
n(Xn � X0)

We demonstrate, under weaker conditions on the noise �i(�) than are neces-
sary when considering Xn, that Y n satis�es the large deviation principle on
C([0; T ] : Rd) with a �Gaussian� type rate function. As is customary for
this type of scaling, we refer to this as moderate deviations.

To demonstrate this result we prove the equivalent Laplace principle,
which involves evaluating limits of quantities of the form

a(n)2 logE

�
exp

�
� 1

a(n)2
F (Y n)

��
when F is bounded and continuous. This is done by representing each
of these quantities in terms of a stochastic control problem, and then using
weak convergence methods as in [12]. Key results needed in this approach are
establishing tightness of controls and controlled processes, and identifying
their limits.

While one might expect the proof of this moderate deviations result to be
similar to the corresponding large deviations result, there are important dif-
ferences. For example, the tightness proof is signi�cantly more complicated
in the case of moderate deviations than it is in the case of large deviations.
For large deviations one is able to establish an a priori bound on certain
relative entropy costs associated with any sequence of nearly minimizing
controls, and under this boundedness of the relative entropy costs, the em-
pirical measures of the controlled driving noises as well as the controlled
processes are tight. However, owing to the scaling in moderate deviations,
even with the information that the analogous relative entropy costs decay
like O(1=a(n)2n), tightness of the empirical measures of the noises does not
hold. Instead, one must consider empirical measures of the conditional
means of the noises, and additional e¤ort is required for the law of large
numbers type result that shows that the conditional means are adequate to
determine the limit. This extra di¢ culty arises for moderate deviations
(even with the vanishing relative entropy costs), because the noise itself is
being ampli�ed by a(n)

p
n.

A second way in which the proofs for large and moderate deviations
di¤er is in their treatment of degenerate noise, i.e., problems where the

2
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support of �i(�) is not all of Rd. This leads to signi�cant di¢ culties in
the proof of the large deviation lower bound, and requires a delicate and
involved molli�cation argument. In contrast, the proof in the setting of
moderate deviations, though more involved than the nondegenerate case, is
much more straightforward.

As a potential application of these results we mention their usefulness
in the design and analysis of Monte Carlo schemes. It is well known that
accelerated Monte Carlo schemes (e.g., importance sampling and splitting)
bene�t by using information contained in the large deviation rate function
as part of the algorithm design (e.g., [3, 8, 13, 14]). In a situation where
one considers events of small but not too small probability one may �nd
the moderate deviation approximation both adequate and relatively easy
to apply, since moderate deviations lead to situations where the objects
needed to design an e¢ cient scheme can be explicitly constructed in terms
of solutions to the linear-quadratic regulator. These issues will be explored
elsewhere.

The existing literature on moderate deviations considers various settings.
Baldi [2] considers the same scaling used here but with no state depend-
ence. For the empirical measure of a Markov chain, de Acosta [7] and de
Acosta and Chen [6] prove lower and upper bounds, respectively. Guillin
[18] considers inhomogeneous functionals of a �fast�continuous time ergodic
Markov chain, and in [19] this is extended to a small noise di¤usion whose
coe¢ cients depend on the �fast�Markov chain. There are also results for
martingale di¤erences such as Dembo [9], Gao [16], and Djellout [11]. For
various reasons, the issues previously mentioned regarding the di¢ culties in
the proof of the upper bound and the simpli�cation in the lower bound for
degenerate noise do not play a role in these papers. For instance, proving
tightness in a moderate deviations setting for continuous time processes is
typically much easier. This is because measures on path space that have
bounded relative entropy with respect to Wiener measure have signi�cantly
less variability than those with bounded relative entropy with respect to
a discrete time process. In particular, bounded relative entropy automat-
ically restricts to what one could consider to be �exponential tilts� of the
original distribution in continuous time, which does not happen in discrete
time, and is the reason more e¤ort must be put into the proof of tightness.
This is illustrated by the convenient alternative formulations of the relat-
ive entropy representation for some continuous time processes (see [4] for
Brownian motion and [5] for Poisson random measures).

The paper is organized as follows. Section 2 gives the statement of the
problem and notation. Section 3 contains the proof of tightness and the
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characterization of limits, which account for most of the mathematical di¢ -
culties, and are also the main results needed to prove the Laplace principle.
Sections 4 and 5 give the proofs of the upper and lower Laplace bounds.
Although all proofs are given for the time interval [0; 1], they extend with
only notational di¤erences to [0; T ] for any T 2 (0;1).

Aknowledgement. The authors thank the referees for several sugges-
tions that improved the paper.

2 Background and Notation

Let
Xn
i+1 = X

n
i +

1

n
b(Xn

i ) +
1

n
�i(X

n
i ), X

n
0 = x0

where the f�i(�)gi2N0 are zero mean iid vector �elds with distribution given
by the stochastic kernel �x. Thus if B(Rd) is the Borel �-algebra on Rd,
then x ! �x(B) is measurable for all B 2 B(Rd), �x(�) is a probability
measure on B(Rd) for all x 2 Rd, and P (�i(x) 2 B) = �x(B) for all x 2 Rd,
B 2 B(Rd) and i 2 N0. De�ne

Hc(x; �)
:
= log

�Z
Rd
ehy;�i�x(dy)

�
for � 2 Rd. The subscript c re�ects the fact that this log moment generating
function uses the centered distribution �x, rather than the usual H(x; �) =
Hc(x; �) + h�; b(x)i. We will use the following.

Condition 2.1 � There exists � > 0 and Kmgf <1 such that

sup
x2Rd

sup
k�k��

Hc(x; �) � Kmgf. (2.1)

� x! �x(dy) is continuous with respect to the topology of weak conver-
gence.

� b(x) is continuously di¤erentiable, and the norm of both b(x) and its
derivative are uniformly bounded by some constant Kb <1.

Throughout this paper we let k�k2A = h�;A�i for any � 2 Rd and
symmetric, nonnegative de�nite matrix A. De�ne

Aij(x)
:
=

Z
Rd
yiyj�x(dy);

4

7



2nd August 2014

and note that the weak continuity of �x with respect to x and (2.1) ensure
that A (x) is continuous in x and its norm is uniformly bounded by some
constant KA. Note that

@Hc(x; 0)

@�i
=

Z
Rd
yi�x(dy) = 0

and
@2Hc(x; 0)

@�i@�j
=

Z
Rd
yiyj�x(dy) = Aij(x)

for all i; j 2 f1; : : : ; dg and x 2 Rd, and that A(x) is nonnegative-de�nite
and symmetric. For x 2 Rd we can therefore write

A(x) = Q(x)�(x)QT (x);

where Q(x) is an orthogonal matrix whose columns are the eigenvectors of
A(x) and �(x) is the diagonal matrix consisting of the eigenvalues of A(x)
in descending order. In what follows we de�ne ��1(x) to be the diagonal
matrix with diagonal entries equal to the inverse of the corresponding eigen-
value for the positive eigenvalues, and equal to 1 for the zero eigenvalues.
Then when we write

k�k2A�1(x) = k�k
2
Q(x)��1(x)QT (x) ; (2.2)

we mean a value of 1 for � 2 Rd not in the linear span of the eigenvectors
corresponding to the positive eigenvalues, and the standard value for vectors
� 2 Rd in that linear span. Assumption (2.1) implies there exists some
KDA <1 and �DA 2 (0; �] (independent of x) such that

sup
x2Rd

sup
k�k��DA

max
i;j;k

���� @3Hc(x; �)@�i@�j@�k

���� � KDA
d3

; (2.3)

and consequently for all k�k � �DA and all x 2 Rd

1

2
k�k2A(x) � k�k

3KDA � Hc(x; �) �
1

2
k�k2A(x) + k�k

3KDA. (2.4)

De�ne the continuous time linear interpolation of Xn
i by X

n(i=n) = Xn
i

for i = 0; :::; n and

Xn(t) = (i+ 1� nt)Xn
i + (nt� i)Xn

i+1 (2.5)
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for t 2 (i=n; i=n+ 1=n). In addition, de�ne

Xn;0
i+1 = X

n;0
i +

1

n
b
�
Xn;0
i

�
, Xn;0

0 = x0

and let Xn;0(t) be the analogous continuous time linear interpolation given
by Xn;0(i=n) = Xn;0

i for i = 0; :::; n and

Xn;0(t) = (i+ 1� nt)Xn;0
i + (nt� i)Xn;0

i+1

for t 2 (i=n; i=n+ 1=n). Clearly Xn;0(t)! X0(t) in C([0; 1] : Rd), where

X0(t) =

Z t

0
b(X0(s))ds+ x0.

Since E�i(x) = 0 for all x 2 Rd, we know that Xn(t) ! X0(t) in C([0; 1] :
Rd) in probability. One can estimate probabilities for events involving
paths outside the law of large numbers limit X0 by proving a large deviation
principle and �nding the corresponding rate function.

De�nition 2.2 Let fZn, n 2 Ng be a sequence of random variables de�ned
on a probability space (
;F ; P ) and taking values in a Polish space Z. A
function I : Z ! [0;1] is called a rate function if for any M < 1 the
set fx : I(x) � Mg is compact in Z. The sequence fZng satis�es the
large deviation principle on Z with rate function I and sequence r(n) if the
following two conditions hold.

� Large Deviation Upper Bound: for each closed subset F of Z

lim sup
n!1

r(n) logP (Zn 2 F ) � � inf
z2F

I(z):

� Large Deviation Lower Bound: for each open subset G of Z

lim inf
n!1

r(n) logP (Zn 2 G) � � inf
z2G

I(z):

Under signi�cantly stronger assumptions, including the assumption that

sup
x2Rd

Hc(x; �) <1

6
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for all � 2 Rd, it has been shown that Xn(t) satis�es the large deviation
principle on C([0; 1] : Rd) with sequence r(n) = 1=n and rate function

IL(�) = inf

�Z 1

0
Lc(�(s); u(s))ds : � (t) = x0 +

Z t

0
b(�(s))ds

+

Z t

0
u(s)ds; t 2 [0; 1]

�
:

where
Lc(x; �) = sup

�2Rd
fh�; �i �Hc(x; �)g

is the Legendre transform of Hc(x; �) [12, 21, 22, 23, 24].
Assume a(n) satis�es

a(n)! 0 and a(n)
p
n!1. (2.6)

We de�ne the rescaled di¤erence

Y n(t) = a(n)
p
n(Xn(t)�Xn;0(t)):

As noted in the introduction, the result stated below also holds with the
interval [0; 1] replaced by [0; T ], T 2 (0;1). Let D denote the gradient
operator.

Theorem 2.3 Assume Condition 2.1. Then fY ngn2N satis�es the large
deviation principle on C([0; 1] : Rd) with sequence a(n)2 and rate function

IM (�) = inf

�
1

2

Z 1

0
ku(t)k2 dt : �(t) =

Z t

0
Db(X0(s))�(s)ds

+

Z t

0
A1=2(X0(s))u(s)ds; t 2 [0; 1]

�
:

IM is essentially the same as what one would obtain by using a linear
approximation around the law of large numbers limit X0 of the dynamics
and a quadratic approximation of the costs in IL. To prove the LDP, it
su¢ ces to show the Laplace principle [12, Theorem 1.2.3]

lim
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�

= inf
u2L2([0;1]:Rd)

�
1

2

Z 1

0
ku(s)k2 ds+ F

�
�A

1=2(X0)u
��

(2.7)

7

10



2nd August 2014

where

�u (t) =

Z t

0
Db(X0(s))�u(s)ds+

Z t

0
u(s)ds. (2.8)

Note that

Y ni+1 = Y
n
i +

a(n)p
n

�
b(Xn

i )� b(X
n;0
i )

�
+
a(n)p
n
�i(X

n
i ); Y n0 = 0

For �; � 2 P(Rd) [the set of probability measures on B(Rd)] , the relative
entropy of � with respect to � is de�ned by

R(�k�) :=
Z
Rd
log

�
d�

d�
(x)

�
�(dx) 2 [0;1]

if � is absolutely continuous with respect to �, and R(�k�) :=1 otherwise.
For general properties of relative entropy we refer to [12, Section 1.4]. The
variational formula [12, Proposition 1.4.2(a)] and chain rule [12, Theorem
C.3.1] imply that

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�
= inf

�
E

"
n�1X
i=0

a(n)2R(�ik� �Xn
i
) + F ( �Y n)

#
(2.9)

for any bounded, continuous F : C([0; 1] : Rd) ! R. Here � 2 P((Rd)n) is
the joint distribution of (��0; : : : ; ��n�1), �i(�) is the conditional distribution
on ��i given (��0; : : : ; ��i�1),

�Xn
i+1 = �Xn

i +
1

n
b( �Xn

i ) +
1

n
��i; �Xn

0 = x0; (2.10)

�Y ni+1 =
�Y ni +

a(n)p
n

�
b( �Xn

i )� b(X
n;0
i )

�
+
a(n)p
n
��i; �Y n0 = 0 (2.11)

and, similar to (2.5), �Xn(t) and �Y n(t) are the continuous time linear inter-
polations of f �Xn

i gi=0;:::;n and f �Y ni gi=0;:::;n. Note that �i depends on past
values of the noise, but we suppress this dependence in the notation. We
will prove (2.7) by proving the lower bound

lim inf
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�

� inf
u2L2([0;1]:Rd)

�
1

2

Z 1

0
ku(s)k2 ds+ F

�
�A

1=2(X0)u
��

(2.12)

8
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and the upper bound

lim sup
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�

� inf
u2L2([0;1]:Rd)

�
1

2

Z 1

0
ku(s)k2 ds+ F

�
�A

1=2(X0)u
��

. (2.13)

We will use a tightness and weak convergence result in the proofs of both of
these bounds, but �rst establish notation used in the rest of the paper.

Construction 2.4 Given a sequence of measures {�ngn2N with each �n 2
P((Rd)n), de�ne the following. Let (��n0 ; : : : ; ��

n
n�1) be random variables

with distribution �n, and de�ne f �Xn
i gi=0;:::;n and f �Y ni gi=0;:::;n by (2.10) and

(2.11). Let
�Xn(t)

:
= (i+ 1� nt) �Xn

i + (nt� i) �Xn
i+1

and
�Y n(t)

:
= (i+ 1� nt) �Y ni + (nt� i) �Y ni+1

for t 2 [i=n; i=n + 1=n]; i = 0; : : : n � 1 be their continuous time linear
interpolations. De�ne the conditional means of the noises

wn(t)
:
=

Z
Rd
y�ni (dy) for t 2

�
i

n
;
i+ 1

n

�
;

the ampli�ed conditional means

ŵn(t)
:
= a(n)

p
nwn(t);

and random measures on Rd 
 [0; 1] by

�̂n(dy 
 dt) := �ŵn(t)(dy)dt = �a(n)pnwn(t)(dy)dt:

We will refer to this construction when given �n to identify associated
�Xn; �Y n; ŵn and �̂n. Given � 2 P(E1 � E2), with each Ei; i = 1; 2 a Pol-
ish space, let �2 denote the second marginal of �, and let �1j2 denote the
conditional distribution on E1 given a point in E2.

Theorem 2.5 Let f�ng be a sequence of measures, each �n 2 P((Rd)n), and
de�ne the corresponding random variables as in Construction 2.4. Assume
that for some KE <1

sup
n2N

(
a(n)2nE

"
1

n

n�1X
i=0

R(�ni k� �Xn
i
)

#)
� KE. (2.14)

9

12



2nd August 2014

Then f(�̂n; �Y n)gn2N is tight in P(Rd 
 [0; 1]) 
 C([0; 1] : Rd). Consider a
subsequence (keeping the index n for convenience) such that f(�̂n; �Y n)g con-
verges weakly to (�̂; Ŷ ). Then with probability 1 �̂2(dt) is Lebesgue measure
and

Ŷ (t) =

Z t

0
Db(X0(s))Ŷ (s)ds+

Z t

0
ŵ(s)ds; (2.15)

where

ŵ(t) =

Z
Rd
y�̂ 1j2(dy jt).

In addition,

lim inf
n!1

a(n)2nE

"
1

n

n�1X
i=0

R(�ni k� �Xn
i
)

#
� E

�Z 1

0

1

2
kŵ(s)k2A�1(X0(s)) ds

�
:

(2.16)

3 Proof of Theorem 2.5

Assume that the bound (2.14) holds. We will show tightness of the f�̂ng
measures using the following lemma.

Lemma 3.1 Assume Condition 2.1 and let

Lc(x; �) = sup
�2Rd

fh�; �i �Hc(x; �)g (3.1)

be the Legendre transform of Hc(x; �). Then for any x 2 Rd and � 2 P(Rd)

R(�k�x) � Lc
�
x;

Z
Rd
y�(dy)

�
.

Proof. While the result is likely known we could not locate a proof (see
[12, Lemma 6.2.3(f)] for a proof when Hc(x; �) is �nite for all � 2 Rd),
and so for completeness provide the details. If R(�k�x) =1 the lemma is
automatically true, so we assume R(�k�x) <1. De�ne `(b)

:
= b log b�b+1

and note that for a; b � 0
ab � ea + `(b). (3.2)

From (2.1) we have Z
Rd
e
�

2d
kyk
�x(dy) � 2dedKmgf <1.

10
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Therefore Z
Rd

�

2d
kyk d�

d�x
(y)�x(dy)

�
Z
Rd
e
�

2d
kyk
�x(dy) +

Z
Rd
`

�
d�

d�
(y)

�
�x(dy)

� 2dedKmgf +R(�k�x);

and consequently for any � 2 RdZ
Rd
k�k kyk d�

d�x
(y)�x(dy) �

2d k�k
�

�
2dedKmgf +R(�k�x)

�
<1. (3.3)

De�ne the bounded, continuous function

FK(y; �) =

(
h�; yi if jh�; yij � K
Kh�;yi
jh�;yij otherwise,

and note that (3.3) and dominated convergence give

lim
K!1

Z
Rd
FK(y; �)�(dy) =

�
�;

Z
Rd
y�(dy)

�
.

In addition, dominated convergence gives

lim
K!1

Z
fy:h�;yi<0g

eFK(y;�)�x(dy) =

Z
fy:h�;yi<0g

eh�;yi�x(dy)

and monotone convergence gives

lim
K!1

Z
fy:h�;yi�0g

eFK(y;�)�x (dy) =

Z
fy:h�;yi�0g

eh�;yi�x (dy) ;

so

lim
K!1

log

�Z
Rd
eFK(y;�)�x (dy)

�
= Hc(x; �).

By the Donsker-Varadhan variational formula [12, Lemma 1.4.3(a)]

R(�k�x) �
Z
Rd
FK(y; �)�(dy)� log

�Z
Rd
eFK(y;�)�x(dy)

�
for all K <1 and � 2 Rd, and so

R(�k�x) � sup
�2Rd

��
�;

Z
Rd
y�(dy)

�
�Hc(x; �)

�
= Lc

�
x;

Z
Rd
y�(dy)

�
;

11
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which completes the proof of the lemma.

The lemma implies the following theorem, which in turn will give tight-
ness of f�̂ng.

Theorem 3.2 Assume Condition 2.1 and (2.14). For the processes fwng
obtained in Construction 2.4

sup
n2N

E

�Z 1

0
a(n)

p
n kwn(s)k ds

�
<1:

In addition, fa(n)
p
nwn(�)gn2N is uniformly integrable in the sense that

lim
C!1

lim sup
n!1

E

�Z 1

0
1fa(n)

p
nkwn(s)k>Cga(n)

p
n kwn(s)k ds

�
= 0.

Proof. We use the following inequality. LetG > 0 satisfy �DAminn2Nfa(n)
p
ng =p

G [recall (2.6)] so that �DA �
p
G=a(n)

p
n for all n. De�ne Lc by (3.1).

Let �K :
= �DAKDA+KA=2. Then with ei denoting the standard unit vectors

a(n)2nLc(x; �)

= sup
�2Rd

�
a(n)

p
n


�; a(n)

p
n�
�
� a(n)2nHc(x; �)

�
� �a(n)

p
n

* p
G

a(n)
p
n
ei; a(n)

p
n�

+
� a(n)2nHc

 
x;�

p
G

a(n)
p
n
ei

!
� �

p
Ga(n)

p
n�i �

1

2
G kA(x)k �G�DAKDA

� �
p
Ga(n)

p
n�i �G �K;

where the �rst inequality follows from making a speci�c choice of � and the
second uses (2.4). Therefore

da(n)2nLc(x; �) + dG �K �
p
Ga(n)

p
n k�k : (3.4)

Using the bound on Lc from Lemma 3.1 together with (2.14) and the last
display,

d

�
KEp
G
+
p
G �K

�
� da(n)2np

G
E

�Z 1

0
Lc

�
�Xn

�
bnsc
n

�
; wn(s)

�
ds

�
+ d

p
G �K (3.5)

� E
�Z 1

0
a(n)

p
n kwn(s)k ds

�
:

12
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For the uniform integrability, let C 2 (1;1) be arbitrary and consider
n large enough that

minf�DA; 1g �
p
C

a(n)
p
n
.

Since �DA � 1=a(n)
p
n the derivation leading (3.5) holds for G = 1, and

therefore

E

�Z 1

0
a(n)

p
n kwn(s)k ds

�
� K� := d

�
KE +

1

2
KA + �DAKDA

�
;

which implies

E

�Z 1

0
1fa(n)

p
nkwn(s)k>Cgds

�
� K�

C
:

Since �DA �
p
C=a(n)

p
n the estimate (3.4) holds with G replaced by C,

and then the last display and (3.5) give

p
CE

�Z 1

0
1fa(n)

p
nkwn(s)k>Cga(n)

p
n kwn(s)k ds

�
� E

�
d

Z 1

0
1fa(n)

p
nkwn(s)k>Cg

�
a(n)2nLc

�
�Xn

�
bnsc
n

�
; wn(s)

�
+ C �K

�
ds

�
� da(n)2nE

�Z 1

0
Lc

�
�Xn

�
bnsc
n

�
; wn(s)

�
ds

�
+ Cd �KE

�Z 1

0
1fa(n)

p
nkwn(s)k>Cgds

�
� K�d

�
1 + �K

�
:

We conclude that

lim
C!1

lim sup
n!1

E

�Z 1

0
1fa(n)

p
nkwn(s)k>Cga(n)

p
n kwn(s)k ds

�
= 0;

which is the claimed uniform integrability.

We continue with the proof of Theorem 2.5. Note that g(y; t) = kyk is a
tightness function on Rd 
 [0; 1], so by [12, Theorem A.3.17]

G(�) =

Z
Rd
[0;1]

kyk �(dy 
 dt)

is a tightness function on P(Rd 
 [0; 1]) and

�G() =

Z
P(Rd
[0;1])

Z
Rd
[0;1]

kyk �(dy 
 dt)(d�)

13
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is a tightness function on P(P(Rd 
 [0; 1])). Since

sup
n2N

EG(�̂n) = sup
n2N

E

�Z
kyk �̂n(dy 
 dt)

�
= sup
n2N

E

�Z 1

0
a(n)

p
n kwn(s)k ds

�
<1,

f�̂ng is tight and consequently there is a subsequence of f�̂ng which con-
verges weakly. To simplify notation we retain n as the index of this conver-
gent subsequence, and denote the weak limit of f�̂ng by �̂. Note that for all
n the second marginal of �̂n(dy
dt), which we denote by �̂n2 (dt), is Lebesgue
measure, and therefore �̂2(dt) is Lebesgue measure with probability 1.

Our aim is to show that �Y n(t) ! Ŷ (t) weakly in C([0; 1] : Rd), where
Ŷ (t) is given by (2.15) in terms of the weak limit �̂. To achieve this we
introduce the following processes which serve as intermediate steps. Let
�Y n0 = 0 and

�Y ni+1 = �Y ni +
a(n)p
n

�
b

�
Xn;0
i +

1

a(n)
p
n
�Y ni

�
� b

�
Xn;0
i

��
+
a(n)p
n
wn
�
i

n

�
;

together with its continuous time linear interpolation de�ned for t 2 [i=n; i=n+
1=n] by

�Y n(t) = (i+ 1� nt) �Y ni + (nt� i) �Y ni+1.

Also let

Ŷ n(t) =

Z t

0
Db
�
X0(s)

�
Ŷ n(s)ds+

Z t

0
ŵn(s)ds (3.6)

where

ŵn(t) =

Z
Rd
y�̂n1j2(dy jt)

as in Construction 2.4. These are both random variables taking values
in C([0; 1] : Rd). Note that �Y n di¤ers from �Y n because �Y n is driven by
the actual noises and �Y n is driven by their conditional means. While the
driving terms of Ŷ n and �Y n are the same [recall that a(n)

p
nwn(t) = ŵn(t)],

they di¤er in that �Y n is still a linear interpolation of a discrete time process
whereas Ŷ n satis�es an ODE. The goal is to show that along the subsequence
where �̂n ! �̂ weakly

�Y n � �Y n ! 0; �Y n � Ŷ n ! 0; and Ŷ n ! Ŷ

in C([0; 1] : Rd), all in distribution. To show Ŷ n ! Ŷ we show that fŶ ng
is tight in C([0; 1] : Rd) and use the mapping de�ned by (3.6) from

R �
0 ŵ

n to
Ŷ n. Recall that supx2Rd kDb(x)k � Kb. The following lemma is an easy
consequence of Gronwall�s inequality.

14
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Lemma 3.3 Let u 2 L1([0; 1] : Rd) be arbitrary and �u be de�ned as in
(2.8). Then for 0 � s � t � 1

k�u(t)� �u(s)k � (t� s)KbeKb

Z 1

0
ku(r)k dr +

Z t

s
ku(r)k dr.

With this lemma and the uniform integrability of f�̂ng given in Theorem
3.2, tightness follows.

Lemma 3.4 Assume Condition 2.1 and (2.14). The sequence fŶ ng de�ned
in (3.6) in terms of the measures f�ng via Construction 2.4 is tight in
C([0; 1] : Rd), as is f

R �
0 ŵ

ndsg.

Proof. It su¢ ces to show that for any " > 0 there is � > 0 such that

lim sup
n!1

P

 
sup

js�tj��

Ŷ n(t)� Ŷ n(s) > "! < ".
Since �̂n is the integral of a point mass located at ŵn(t) ,

T (C)
:
= lim sup

n!1
E

�Z 1

0
1fkŵn(t)k>Cg kŵn(t)k dt

�
= lim sup

n!1
E

"Z
fkyk>Cg

kyk �̂n(dy 
 dt)
#
:

By Theorem 3.2 T (C)! 0 as C !1. De�ne alsoK� = supn2NE
R 1
0 kŵ

n(t)k dt,
which is �nite by Theorem 3.2. Let " > 0 be arbitrary. Then for any s < t
satisfying t� s � � Lemma 3.3 impliesŶ n(t)� Ŷ n(s) � �KbeKb

Z 1

0
kŵn(r)k dr +

Z t

s
kŵn(r)k dr:

Since Z t

s
kŵn(r)k dr � C� +

Z 1

0
1fkŵn(r)k>Cg kŵn(r)k dr;

it follows thatŶ n(t)� Ŷ n(s) � ��C +KbeKb

Z 1

0
kŵn(r)k dr

�
+

Z 1

0
1fkŵn(r)k>Cg kŵn(r)k dr.
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Hence by Markov�s inequality

lim sup
n!1

P

 
sup

js�tj��

Ŷ n(t)� Ŷ n(s) > "!

� �

"
lim sup
n!1

E

��
C +Kbe

Kb

Z 1

0
kŵn(r)k dr

��
+
1

"
lim sup
n!1

E

�Z 1

0
1fkŵn(r)k>Cg kŵn(r)k dr

�
� �

"
(C +Kbe

KbK�) +
1

"
T (C):

Choose C < 1 such that T (C) < "2=2 and then choose � > 0 so that the
�(C +Kbe

KbK�) < "
2=2. This shows the tightness of fŶ ng. The tightness

of f
R �
0 ŵ

ndsg is simpler, and follows from the bound

lim sup
n!1

P

 
sup

js�tj��

Z t

s
kŵn(r)k dr > "

!
� �C

"
+
1

"
T (C):

We still need to show that Ŷ n converges to Ŷ . This also relies on the
uniform integrability given by Theorem 3.2.

Lemma 3.5 Assume Condition 2.1 and (2.14). Let the sequence fŶ n (t)g
be de�ned by (3.6), consider a convergent subsequence f(Ŷ n; �̂n)g with limit
(Ŷ �; �̂), and let Ŷ (t) be de�ned by (2.15). Then w.p.1 Ŷ � = Ŷ .

Proof. We can write

Ŷ n(t) =

Z t

0
Db(X0(s))Ŷ n(s)ds+

Z t

0

Z
Rd
y�̂n(dy 
 ds):

Using the uniform integrability proved in Theorem 3.2 and that �̂2 is Le-
besgue measure w.p.1, sending n!1 and using the de�nition of ŵ gives

Ŷ �(t) =

Z t

0
Db(X0(s))Ŷ �(s)ds+

Z t

0

Z
Rd
y�̂(dy 
 ds)

=

Z t

0
Db(X0(s))Ŷ �(s)ds+

Z t

0
ŵ(s)ds:

By uniqueness of the solution, Ŷ � = Ŷ follows.
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It remains to show �Y n � �Y n ! 0 and �Y n � Ŷ n ! 0. We begin with
�Y n� �Y n ! 0. Recall that the di¤erence between �Y n and �Y n is that the �rst
is driven by the actual noises and the second is driven by their conditional
means. The following theorem is a law of large numbers type result for the
di¤erence between the noises and their conditional means, and is the most
complicated part of the analysis.

Theorem 3.6 Assume Condition 2.1 and (2.14). Consider the sequence
f��ni gi=0;:::;n�1 of controlled noises and fwn(i=n)gi=0;:::;n�1 of means of the
controlled noises as in Construction 2.4. For i 2 f1; : : : ; ng let

Wn
i
:
=
1

n

i�1X
j=0

a(n)
p
n (��ni � wn (i=n)) .

Then for any � > 0

lim
n!1

P

�
max

i2f1;:::;ng
kWn

i k � �
�
= 0.

Proof. According to (2.14)

1

n

n�1X
i=0

E[R(�ni k� �Xn
i
)] � KE

a2(n)n
:

Because of this the (random) Radon-Nikodym derivatives

fni (y) =
d�ni
d� �Xn

i

(y)

are well de�ned and can be selected in a measurable way. We will control
the magnitude of the noise when the Radon-Nikodym derivative is large by
bounding

1

n

n�1X
i=0

E[1ffni (��ni )�rg k��
n
i k]

for large r.
From the bound on the moment generating function (2.1),

sup
x2Rd

Z
Rd
e
�

2d
kyk
�x(dy) � 2dedKmgf . (3.7)

Let
� = minf�=2d+1; 1g (3.8)
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and recall the de�nition `(b) := b log b� b+ 1. Then

1

n

n�1X
i=0

E
h
1ffni (��ni )�rg k��

n
i k
i
=
1

n

n�1X
i=0

E

"Z
fy:fni (y)�rg

kyk fni (y)� �Xn
i
(dy)

#

and the bound ab � ea + `(b) for a; b � 0 with a = � kyk and b = fni (y)
gives that for all i

E

"Z
fy:fni (y)�rg

kyk fni (y)� �Xn
i
(dy)

#

� 1

�
E

"Z
fy:fni (y)�rg

e�kyk� �Xn
i
(dy)

#
+
1

�
E

"Z
fy:fni (y)�rg

`(fni (y))� �Xn
i
(dy)

#
:

Since `(b) � 0 for all b � 0

E

"Z
fy:fni (y)�rg

` (fni (y))� �Xn
i
(dy)

#
� E

�Z
Rd
`(fni (y))� �Xn

i
(dy)

�
= E[R(�ni k� �Xn

i
)];

and by Hölder�s inequality (recall (3.7) and (3.8))

E

"Z
fy:fni (y)�rg

e�kyk� �Xn
i
(dy)

#

� E
"�Z

Rd
1ffni (y)�rg� �Xn

i
(dy)

� 1
2
�Z

Rd
e2�kyk� �Xn

i
(dy)

� 1
2

#

� E
h
� �Xn

i
(fy : fni (y) � rg)

1
2

i �
2dedKmgf

� 1
2
:

In addition Markov�s inequality gives for r � e�1

� �Xn
i
(fy : fni (y) � rg) �

1

r log r

Z
log(fni (y))f

n
i (y)� �Xn

i
(dy) =

R(�ni k� �Xn
i
)

r log r
.

Therefore

1

n

n�1X
i=0

E

"Z
ffni (y)�rg

kyk fni (y)� �Xn
i
(dy)

#

� 1

�

�
2dedKmgf

� 1
2 1

n

n�1X
i=0

E

24 R(�ni k� �Xn
i
)

r log r

! 1
2

35+ 1

�

1

n

n�1X
i=0

E[R(�ni k� �Xn
i
)]:
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Since by Jensen�s inequality

1

n

n�1X
i=0

E

24 R(�ni k� �Xn
i
)

r log r

! 1
2

35 � � 1

r log r

� 1
2

 
1

n

n�1X
i=0

E[R(�ni k� �Xn
i
)]

! 1
2

;

we obtain the overall bound

1

n

n�1X
i=0

E
h
1ffni (��ni )�rg k��

n
i k
i

� 1

�

�
2dedKmgf

� 1
2

�
1

r log r

� 1
2

 
1

n

n�1X
i=0

E[R(�ni k� �Xn
i
)]

! 1
2

+
1

�

1

n

n�1X
i=0

E[R(�ni k� �Xn
i
)]

� 1

�

K
1
2
E

a(n)
p
n

�
2dedKmgf

� 1
2

�
1

r log r

� 1
2

+
1

�

KE
a(n)2n

. (3.9)

Using this result we can complete the proof. De�ne

�n;ri
:
=

�
�vni if fni (��

n
i ) < r

0 otherwise.

For any for any � > 0

P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

�
��ni � wn

�
i

n

�� � 3�
)

� P
(

max
k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n(��ni � �

n;r
i )

 � �
)

+ P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

 
�n;ri �

Z
fy:fni (y)<rg

y�ni (dy)

! � �
)

+ P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

 
wn
�
i

n

�
�
Z
fy:fni (y)<rg

y�ni (dy)

! � �
)
.
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The �rst term satis�es

P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n(��ni � �

n;r
i )

 � �
)

� 1

�
a(n)

p
n
1

n

n�1X
i=0

E [k��ni � �
n;r
i k]

=
1

�
a(n)

p
n
1

n

n�1X
i=0

E
h
1ffni (��ni )�rg k��

n
i k
i
.

The second term is a submartingale. The �rst inequality in the next display
follows from Doob�s submartingale inequality. The second inequality uses
a conditioning argument and that for any integrable random variable Z,
E[Z � EZ]2 � EZ2. We have

P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

 
�n;ri �

Z
fy:fni (y)<rg

y�ni (dy)

! � �
)

� 1

�2
E

24 1n
n�1X
i=0

a(n)
p
n

 
�n;ri �

Z
fy:fni (y)<rg

y�ni (dy)

!
2
35

=
1

�2
a(n)2

n

n�1X
i=0

E

24
 
�n;ki �

Z
fy:fni (y)<rg

y�ni (dy)

!
2
35

� 1

�2
a(n)2

n

n�1X
i=0

E

��n;ki 2�

=
1

�2
a(n)2

n

n�1X
i=0

E

"Z
fy:fni (y)<rg

kyk2 fni (y)� �Xn
i
(dy)

#

� r

�2
a(n)2

n

n�1X
i=0

E

�Z
Rd
kyk2 � �Xn

i
(dy)

�
� r

�2
a(n)2K�;2;

where

K�;2 = sup
x2Rd

Z
Rd
kyk2 �x(dy) <1;
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and the �niteness is due to (2.1). We can use Jensen�s inequality with the
third term and get the same bound that was shown for the �rst. We have

P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

 
wn
�
i

n

�
�
Z
fy:fni (y)<rg

y�ni (dy)

! � �
)

� 1

�
a(n)

p
n
1

n

n�1X
i=0

E

"
 
wn
�
i

n

�
�
Z
fy:fni (y)<rg

y�ni (dy)

!
#

=
1

�
a(n)

p
n
1

n

n�1X
i=0

E

"
Z
fy:fni (y)�rg

y�ni (dy)


#

� 1

�
a(n)

p
n
1

n

n�1X
i=0

E

"Z
fy:fni (y)�rg

kyk �ni (dy)
#

=
1

�
a(n)

p
n
1

n

n�1X
i=0

E
h
1ffni (��ni )�rg k��

n
i k
i
.

Combining the bounds for these three terms with (3.9) gives

P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

�
��ni � wn

�
i

n

�� � 3�
)

� 2

�
a(n)

p
n
1

n

n�1X
i=0

E
h
1ffni (��ni )�r] k��

n
i k
i
+
r

�2
a(n)2K�;2

� 2

��
K

1
2
E

�
2dedKmgf

� 1
2

�
1

r log r

� 1
2

+
2

��

KE
a(n)

p
n
+ a(n)2

r

�2
K�;2:

Choosing r = 1=a(n) and using a(n)! 0; a(n)
p
n!1 gives

P

(
max

k=0;:::;n�1

 1n
kX
i=0

a(n)
p
n

�
��ni � wn

�
i

n

�� � 3�
)
! 0

as n!1, which completes the proof.
This theorem, combined with the following discrete version of Gronwall�s

inequality, will allow us to prove �Y n � �Y n ! 0.

Lemma 3.7 If fang, fbng, and fcng are nonnegative sequences de�ned for
n = 0; 1; : : : and satisfying

an � cn +
n�1X
k=0

bkak;
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then

an � cn +
n�1X
k=0

bkck exp

(
n�1X
i=k+1

bi

)
.

Theorem 3.8 Under the conditions of Theorem 3.6 �Y n � �Y n ! 0 in prob-
ability.

Proof. Recall that

�Y nk =

k�1X
i=0

a(n)p
n

�
b

�
Xn;0
i +

1

a(n)
p
n
�Y ni

�
� b

�
Xn;0
i

��
+

k�1X
i=0

a(n)p
n
��ni

and

�Y nk =

k�1X
i=0

a(n)p
n

�
b

�
Xn;0
i +

1

a(n)
p
n
�Y ni

�
� b

�
Xn;0
i

��
+

k�1X
i=0

a(n)p
n
wn
�
i

n

�
;

so with Wn
k de�ned as in Theorem 3.6

 �Y nk � �Y nk
 � kWn

k k+
k�1X
i=0

Kb
n

 �Y ni � �Y ni
 .

Using Lemma 3.7 gives

 �Y nk � �Y nk
 � kWn

k k+
k�1X
i=0

kWn
i k
Kb
n
exp

�
Kb
n
(k � i� 1)

�
� (1 +KbeKb) max

i2f1;:::;kg
fkWn

i kg

so
max

i2f1;:::;ng

� �Y ni � �Y ni
	 � (1 +KbeKb) max

i2f1;:::;ng
fkWn

i kg.

Since maxi2f1;:::;ngfkWn
i kg ! 0 in probability

max
i2f1;:::;ng

� �Y ni � �Y ni
	! 0 and hence sup

t2[0;1]

 �Y n(t)� �Y n(t)
! 0

in probability.

To complete the proof of the convergence we need to show �Y n� Ŷ n ! 0.
Recall that these two processes have the same driving terms but di¤erent
drifts, in that Ŷ n satis�es the ODE

Ŷ n(t) =

Z t

0
Db(X0(s))Ŷ n(s)ds+

Z t

0
ŵn(s)ds
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while �Y n is the linear interpolation of the discrete time process de�ned by
�Y n0 = 0 and

�Y ni+1 =
�Y ni +

a(n)p
n

�
b

�
Xn;0
i +

1

a(n)
p
n
�Y ni

�
� b

�
Xn;0
i

��
+
1

n
ŵn
�
i

n

�
:

However, essentially the same arguments as those used in Lemma 3.4 to
show tightness of fŶ ng can be used to prove tightness of f �Y ng, and then
it easily follows as in Lemma 3.5 that any limit will satisfy the same ODE
(2.15) as the limit of fŶ ng, and therefore �Y n � Ŷ n ! 0 follows.

Combining �Y n � �Y n ! 0, �Y n � Ŷ n ! 0, and Ŷ n ! Ŷ demonstrates
that along the subsequence where �̂n ! �̂ weakly �Y n ! Ŷ in distribution,
which implies that along this subsequence (�̂n; �Y n) ! (�̂; Ŷ ) weakly. We
have already shown that with probability 1 �̂2(dt) is Lebesgue measure and

Ŷ (t) =

Z t

0
Db(X0(s))Ŷ (s)ds+

Z t

0

Z
Rd
y�̂ 1j2(dy jt)ds;

so the proof of convergence (i.e., the �rst part of Theorem 2.5) is complete.
To �nish Theorem 2.5 we must lastly show the bound (2.16). Note that

the weak convergence of �Y n implies

sup
t2[0;1]

 �Xn(bntc =n)�X0(t)
! 0 in probability. (3.10)

De�ne random measures on Rd 
 Rd 
 [0; 1] by

n (dx
 dy 
 dt) = � �Xn(bntc=n) (dx) �̂
n (dy 
 dt) .

Note that the tightness of fng follows easily from (3.10) and from the
tightness of f�̂ng. Thus given any subsequence we can choose a further
subsequence (again we will retain n as the index for simplicity) along which
fng converges weakly to some limit  on P

�
Rd 
 Rd 
 [0; 1]

�
with

2;3 (dy 
 dt) = �̂ (dy 
 dt) ,

where 2;3 is the second and third marginal of . If we establish (2.16) for
this subsequence it follows for the original one using a standard argument
by contradiction. For � > 0 let

GX
0

� =
�
(x; y; t) :

x�X0 (t)
 � �	

be closed sets centered around X0 (t) in the x variable, and note that by
(3.10) and weak convergence, for all � > 0

1 = lim sup
n!1

E
h
n
�
GX

0

�

�i
� E

h

�
GX

0

�

�i
.
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Thus
E
h

�
\n2NGX

0

1=n

�i
= 1

so, with probability 1,  puts all its mass on
�
(x; y; t) : x = X0 (t)

	
. There-

fore with probability 1, for a.e. (y; t) under 2;3 (dy 
 dt),

1j2;3 (dxj y; t) = �X0(t) (dx) .

Combined with the fact that the second marginal of �̂ (dy 
 dt) is Lebesgue
measure, this gives

 (dx
 dy 
 dt) = �X0(t) (dx) �̂ (dyj t) dt. (3.11)

Let
�LK (x; �) = sup

�2Rd

�
h�; �i � 1

2
k�k2A(x) �

1

2K
k�k2

�
:

Then (2.4) implies that

lim inf
n!1

a(n)2nLc

�
x;

1

a(n)
p
n
�

�
� �LK (x; �) (3.12)

uniformly in x and compact subsets of �. We also have

�LK (x; �) "
1

2
k�k2A�1(x)

as K ! 1 for all (x; �) 2 R2d. Combining (3.12) with Lemma 3.1 and
using Fatou�s lemma for weak convergence,

lim inf
n!1

a(n)2nE

"
n�1X
i=0

1

n
R(�ni k� �Xn

i
)

#

� lim inf
n!1

E

"Z
Rd
Rd
[0;1]

a(n)2nLc

�
x;

1

a(n)
p
n
y

�
n (dx
 dy 
 dt)

#

� E
"Z

Rd
Rd
[0;1]
�LK (x; y)  (dx
 dy 
 dt)

#
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for all K. Then using the monotone convergence theorem, the decomposi-
tion (3.11), and Jensen�s inequality in that order shows that

lim inf
n!1

a(n)2nE

"
n�1X
i=0

1

n
R(�ni k� �Xn

i
)

#

� lim
K!1

E

"Z
Rd
Rd
[0;1]

�LK (x; y)  (dx
 dy 
 dt)
#

= E

"Z
Rd
Rd
[0;1]

1

2
kyk2A�1(x)  (dx
 dy 
 dt)

#

= E

�Z 1

0

Z
Rd

1

2
kyk2A�1(X0(t)) �̂ (dyj t) dt

�
� E

�
1

2

Z 1

0
kŵ(t)k2A�1(X0(t)) dt

�
;

which is (2.16).

4 Laplace Upper Bound

The goal of this section is to prove (2.12), which due to the minus sign
corresponds to the Laplace upper bound. Suppose for each n that �n

comes within " of achieving the in�mum in (2.9), so that

lim inf
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�
+ "

� lim inf
n!1

E

"
n�1X
i=0

a(n)2R(�ni k� �Xn
i
) + F ( �Y n)

#
: (4.1)

Since supx2Rd jF (x)j � KF for some KF <1, we also have

sup
n
a(n)2nE

"
n�1X
i=0

1

n
R(�ni k� �Xn

i
)

#
� 2KF + ":

Consequently we can choose a subsequence of f�ng (we retain n as the
index for convenience) along which the conclusions of Theorem 2.5 hold.
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Combining this with (4.1) gives

lim inf
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�
+ "

� lim inf
n!1

E

"
n�1X
i=0

a(n)2R(�ni k� �Xn
i
) + F ( �Y n)

#

� E
�Z 1

0

1

2
kŵ(s)k2A�1(X0(s)) ds+ F (Ŷ )

�
.

Recalling

Ŷ (t) =

Z t

0
Db(X0(s))Ŷ (s)ds+

Z t

0
ŵ(s)ds;

it follows that

E

�Z 1

0

1

2
kŵ(s)k2A�1(X0(s)) ds+ F (Ŷ )

�
� inf
u2L2([0;1]:Rd)

�Z 1

0

1

2
ku(s)k2A�1(X0(s)) ds+ F (�

u)

�
= inf
u2L2([0;1]:Rd)

�Z 1

0

1

2
ku(s)k2 ds+ F

�
�A

1=2(X0)u
��

;

with �u de�ned as in (2.8). Since " > 0 is arbitrary, we have the lower
bound (2.12).

5 Laplace Lower Bound

The goal of this section is to prove (2.13). Note that for u; v 2 L2([0; 1] : Rd)
and �A

1=2(X0)u; �A
1=2(X0)v given by (2.8)

�A
1=2(X0)u(t)� �A1=2(X0)v(t)

=

Z t

0
Db(X0(s))

�
�A

1=2(X0)u(s)� �A1=2(X0)v(s)
�
ds

+

Z t

0
A1=2(X0(s))(u(s)� v(s))ds:
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Thus by Gronwall�s inequality

sup
t2[0;1]

�A1=2(X0)u(t)� �A1=2(X0)v(t)
 (5.1)

� (1 +KbeKb)

Z 1

0

A1=2(X0(s))u(s)�A1=2(X0(s))v(s)
 ds

� (1 +KbeKb)K
1=2
A

�Z 1

0
ku(s)� v(s)k2 ds

� 1
2

.

Since C([0; 1] : Rd) is dense in L2([0; 1] : Rd), the proof of the Laplace lower
bound is reduced to showing that for an arbitrary u 2 C([0; 1] : Rd)

lim sup
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�
� 1

2

Z 1

0
ku(s)k2 ds+ F

�
�A

1=2(X0)u
�
.

(5.2)
The main di¢ culty is to deal with the possible degeneracy of the noise.

Recall the orthogonal decomposition of A�1(x) (2.2). De�ne

A�1K (x) = Q(x)�
�1
K (x)Q

T (x)

where ��1K (x) is the diagonal matrix such that �
�1
ii;K(x) = ��1ii (x) when

��1ii (x) � K2 and ��1ii;K(x) = K2 when ��1ii (x) > K2. Note that by [20,

Theorem 6.2.37] A1=2(x), A�1K (x) and A
1=2
K (x) are continuous functions of

A(x), and consequently they are also continuous functions of x 2 Rd. In
addition de�ne

uK(s) =

(
u(s) for ku(s)k � K
Ku(s)
ku(s)k for ku(s)k > K .

Let �u;K(t) = �A(X
0)A

�1=2
K (X0)uK (t), and note that �u;K solves

�u;K(t) =

Z t

0
Db(X0(s))�u;K(s)ds

+

Z t

0
A(X0(s))A

�1=2
K (X0(s))uK(s)ds. (5.3)

To simplify notation we de�ne sni
:
= i=n and sn(t) = bntc =n, where bac

is the integer part of a. Note that sn(t) � t ! 0 uniformly for t 2 [0; 1] as
n!1. For n su¢ ciently large

max
0�i�n�1

�
1

a(n)
p
n

A�1=2K

�
X0 (sni )

�
uK (s

n
i )
� � 1

a(n)
p
n
K2 � �DA
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and we can de�ne the sequence f( �Xn;u;K ; �Y n;u;K ; �n;u;K ; �̂n;u;K)g as in Con-
struction 2.4 with

�n;u;Ki (dy)

= exp

��
y;

1

a(n)
p
n
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i )

�
�Hc

�
�Xn;u;K
i ;

1

a(n)
p
n
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i )

��
� �Xn;u;K

i
(dy).

Using (2.3) and the fact thatZ
Rd
y expfhy; �i �Hc(x; �)g�x(dy) = D�Hc(x; �);

we have for k�k � �DAZ
Rd
y expfhy; �i �Hc(x; �)g�x(dy)�A(x)�

 � KDA k�k2 . (5.4)

The next result identi�es the limit in probability of the controlled processes
and an asymptotic bound for the relative entropies.

Theorem 5.1 Let u 2 C([0; 1] : Rd) and K < 1 be given, construct
f( �Xn;u;K ; �Y n;u;K ; �n;u;K ; �̂n;u;K)g as in this section and de�ne �u;K by (5.3).
Then

�Y n;u;K ! �u;K (5.5)

in C([0; 1] : Rd) in probability, and

lim sup
n!1

a2(n)nE

"
1

n

n�1X
i=0

R
�
�n;u;Ki

� �Xn;u;K
i

�#

� 1

2

Z 1

0

A�1=2K (X0(s))uK(s)
2
A(X0(s))

ds: (5.6)

Proof. Using (5.4) to bound the second term and (2.4) to bound the third,
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for n satisfying 1
a(n)

p
n
K2 � �DA

R
�
�n;u;Ki

� �Xn;u;K
i

�
=

Z
Rd

�
y;

1

a(n)
p
n
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i )

�
�n;u;Ki (dy)

�Hc
�
�Xn;u;K
i ;

1

a(n)
p
n
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i )

�
�
�

1

a(n)
p
n
A
�
�Xn;u;K
i

�
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i ) ;

1

a(n)
p
n
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i )

�
� 1
2

�
1

a(n)
p
n
A
�
�Xn;u;K
i

�
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i ) ;

1

a(n)
p
n
A
�1=2
K

�
X0 (sni )

�
uK (s

n
i )

�
+

2

a(n)3n3=2
KDAK

6

=
1

2a(n)2n

A�1=2K

�
X0 (sni )

�
uK (s

n
i )
2
A( �Xn;u;K

i )
+

2

a(n)3n3=2
KDAK

6:

Consequently

lim sup
n!1

a2(n)nE

"
1

n

n�1X
i=0

R
�
�n;u;Ki

� �Xn;u;K
i

�#
(5.7)

� lim sup
n!1

1

2
E

"
1

n

n�1X
i=0

A�1=2K

�
X0 (sni )

�
uK (s

n
i )
2
A( �Xn;u;K

i )

#
;

where in fact

lim sup
n!1

1

2
E

"
1

n

n�1X
i=0

A�1=2K

�
X0 (sni )

�
uK (s

n
i )
2
A( �Xn;u;K

i )

#
� 1

2
K4KA.

Therefore (2.14) is satis�ed by f�n;u;Kg, so we can apply Theorem 2.5 and
choose a subsequence (keeping n as the index for convenience) along which
f(�̂n;u;K ; �Y n;u;K)g converges weakly to some limit (�̂u;K ; Ŷ u;K), where �̂u;K2
is Lebesgue measure and

Ŷ u;K(t) =

Z t

0
Db(X0(s))Ŷ u;K(s)ds+

Z t

0

Z
Rd
y�̂u;K1j2 (dy js)ds.
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This implies
sup
t2[0;1]

 �Xn;u;K(t)�X0(t)
! 0 (5.8)

in probability. Because of this, the uniform bound on A1=2(x) and the
continuity of A1=2(x), we have (recall that sn(t) := bntc =n)

sup
t2[0;1]

A1=2( �Xn;u;K(sn(t)))�A1=2(X0(sn(t)))
! 0

in probability. However, the continuity of A1=2(X0)A
�1=2
K (X0)uK gives

sup
t2[0;1]

A1=2(X0(sn(t)))A
�1=2
K (X0(sn(t)))uK(s

n(t))

�A1=2(X0(t))A
�1=2
K (X0(t))uK(t)

! 0.

Combining these limits, and using the fact that A�1=2K (X0)uK is uniformly
bounded, shows that

sup
t2[0;1]

A1=2( �Xn;u;K(sn(t)))A
�1=2
K (X0(sn(t)))uK(s

n(t)) (5.9)

�A1=2(X0(t))A
�1=2
K (X0(t))uK(t)

! 0

in probability. This combined with the uniform bound on A�1=2K (X0)uK
and dominated convergence gives

lim sup
n!1

E

�
1

2

Z 1

0

A�1=2K (X0(sn(t)))uK(s
n(t))

2
A( �Xn;u;K(sn(t)))

dt

�
=
1

2

Z 1

0

A�1=2K (X0(t))uK(t)
2
A(X0(t))

dt:

Combining this with (5.7) shows (5.6).
To prove (5.5) we will show that in fact

�̂u;K(dy 
 dt) = �
A(X0(t))A

�1=2
K (X0(t))uK(t)

(dy)dt.

For all � > 0 let

G� =
n
(z; t) 2 Rd � [0; 1] :

z �A(X0(t))A
�1=2
K (X0(t))uK(t)

 � �o ;
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and note that by weak convergence lim supn!1E[�̂
n;u;K(G�)] � E[�̂u;K(G�)].

Note also that

E[�̂n;u;K(G�)]

� P
"
sup
t2[0;1]

a(n)pn Z
Rd
y�n;u;Kbntc (dy)�A(X

0(t))A
�1=2
K (X0(t))uK(t)

 � �
#
.

However, by (5.4) we can choose n large enough to make

sup
t2[0;1]

a(n)pn Z
Rd
y�n;u;Kbntc (dy)

�A
�
�Xn;u;K (sn(t))

�
A
�1=2
K

�
X0 (sn(t))

�
uK (s

n(t))


arbitrarily small, and the proof that

sup
t2[0;1]

A( �Xn;u;K(sn(t)))A
�1=2
K (X0(sn(t)))uK(s

n(t))

�A(X0(t))A
�1=2
K (X0(t))uK(t)

! 0

in probability is identical to the proof of (5.9). Therefore lim supn!1E[�̂
u;K;n(G�)] =

1 for all � > 0, and so E[�̂u;K(\n2NG1=n)] = 1. This implies that with prob-
ability 1

�̂u;K1j2 (dyj t) = �A(X0(t))A
�1=2
K (X0(t))uK

(dy)

for a.e. t. It follows that

Ŷ u;K(t) =

Z t

0
Db(X0(s))Ŷ u;K(s)ds+

Z t

0
A(X0(s))A

�1=2
K (X0(s))uK(s)ds;

and therefore �Y n;u;K ! �u;K weakly. This implies (5.5) and completes the
proof.

The second theorem in this section allows us to approximate F (�A
1=2(X0)u)

by F (�u;K) and 1
2

R 1
0 ku(s)k

2 ds by

1

2

Z 1

0

A�1=2K (X0(s))uK(s)
2
A(X0(s))

ds.

Theorem 5.2 Let u 2 C([0; 1] : Rd) and de�ne �A
1=2
K (X0)u by (2.8) and

�u;K by (5.3). Then as K !1

�u;K ! �A
1=2(X0)u
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in C([0; 1] : Rd) and

sup
K2(0;1)

1

2

Z 1

0

A�1=2K (X0(s))uK(s)
2
A(X0(s))

ds � 1

2

Z 1

0
ku(s)k2 ds.

Proof. Note thatA1=2(X0(s))A
�1=2
K (X0(s))uK(s)

 � ku(s)k
for all s 2 [0; 1] and K 2 (0;1) so

sup
K2(0;1)

1

2

Z 1

0

A�1=2K (X0(s))uK(s)
2
A(X0(s))

ds � 1

2

Z 1

0
ku(s)k2 ds.

In addition,

A1=2(X0(s))A1=2(X0(s))A
�1=2
K (X0(s))uK(s)! A1=2(X0(s))u(s)

andA1=2(X0(s))A1=2(X0(s))A
�1=2
K (X0(s))uK(s)

 � A1=2(X0(s))u(s)


for all s 2 [0; 1] so dominated convergence gives

A1=2(X0)A1=2(X0)A
�1=2
K (X0)uK ! A1=2(X0)u

in L1([0; 1] : Rd). Combining this with the second line of (5.1) shows that

�u;K ! �A
1=2(X0)u

in C([0; 1] : Rd).

Using (2.9) and the fact that any given control is suboptimal,

� a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�

� E
"
n�1X
i=0

a(n)2R
�
�n;u;Ki

� �Xn;u;K
i

�
+ F ( �Y n;u;K)

#
.

Using Theorem 5.1, this implies

lim sup
n!1

�a(n)2 logE
�
e
� 1
a(n)2

F (Y n)
�

� 1

2

Z 1

0

A�1=2K (X0(s))uK(s)
2
A(X0(s))

ds+ F (�u;K).

Sending K ! 1 and using Theorem 5.2 gives (5.2), and hence completes
the proof of the lower bound (2.13).
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